Article Index

Lightning is a high-voltage discharge (usually negative) within clouds (intra-), to each other (inter-), or to the earth. The cloud-to-ground (CG) flash is the one we are usually concerned with lightning protection. The charged cells in clouds normally attract charges of opposite polarity on the earth's surface or on high objects located directly below them. When the charge reaches a critical level causing the insulation between cloud and earth breaks down, it develops a stepped ionized path, frequently to the earth, resulting in a high current discharge (stroke) that neutralizes, for the moment, these cloud and earth charges. The discharge current increases from zero to a maximum of 1 us to 10 us, and then declines to half the peak value of 20 us to 1000 us. Lightning flashes usually consist of a sequence of individual return strokes that transfer significant electrical charge usually from the cloud to earth.

Lightning protection is essential for buildings, transmission lines, and electrical equipment from lightning discharges and surges. The protection to be given for a structure or facility against lightning strikes is based on the probability of lightning strike and the extent of risk of damage or disruption that a lightning strike can cause. Based on the latter criterion, structures can be divided into various classes in ascending order of protection requirement.

Class 1
Structures, which need very little or no additional protection except connecting them to an effective ground electrode, come under this category. These are all-metal structures, buildings with metallic roofing, side cladding and metallic frame work, stand-alone metallic masts, etc.
Class 2
Structures that have a metallic roof, side cladding and non-conductive framework are in this category. Protection to these structures is provided by down conductors bonded to the roof and side members and connected to ground electrodes.
Class 3
These include metallic frame buildings with non-metallic roof and side cladding. In this case, air terminations on the top of the building and on other non-conducting surfaces connected to the metal frame of the building are required to protect the insulating surfaces from being punctured by lightning.
Class 4
This class includes completely non-metallic structures such as buildings and tall chimneys/stacks constructed of reinforced concrete or masonry. These structures need extensive protection using air terminations, down conductors and grounding electrodes.
Class 5
Buildings of historic or public importance or those containing valuable materials, places where a large number of people can gather at a time and public utilities such as power plants, water works, etc. come in this category and need utmost attention while planning protection.